David-Wineland-And-Serge-Haroche.jpg
David Wineland And Serge Haroche

From the Nobel Prize Committee:

The Nobel Prize in Physics 2012 was awarded jointly to Serge Haroche and David J. Wineland "for ground-breaking experimental methods that enable measuring and manipulation of individual quantum systems"

This is exciting news for people, like myself, who work in the field of quantum optics and quantum information. Both David Wineland and Serge Haroche have spent decades carrying out beautiful experiments that further push and refine our ability to manipulate and control quantum systems.

David Wineland's work with trapped ions has led to important improvements in atomic clocks and served as exciting testbed for quantum computing. Serge Haroche's work with cavity quantum electrodynamics is opening up new techniques for controlling the interaction of light and matter.

The Nobel Prize Committee has a nice, but slightly more technical, background of the research that is worth a read:

The behaviour of the individual constituents that make up our world – atoms (matter) and photons (light) – is described by quantum mechanics. These particles are rarely isolated and usually interact strongly with their environment. The behaviour of an ensemble of particles generally differs from isolated ones and can often be described by classical physics. From the beginning of the field of quantum mechanics, physicists used thought experiments to simplify the situation and to predict single quantum particle behaviour.

During the 1980s and 1990s, methods were invented to cool individual ions captured in a trap and to control their state with the help of laser light. Individual ions can now be manipulated and observed in situ by using photons with only minimal interaction with the environment. In another type of experiment, photons can be trapped in a cavity and manipulated. They can be observed without being destroyed through interactions with atoms in cleverly designed experiments. These techniques have led to pioneering studies that test the basis of quantum mechanics and the transition between the microscopic and macroscopic worlds, not only in thought experiments but in reality. They have advanced the field of quantum computing, as well as led to a new generation of high-precision optical clocks.

Here is an interview with David Wineland that IQC conducted earlier this year when he was visiting.

Congratulations to both research groups and everyone involved.